
Reinforcement Learning

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 4: Policy Gradient I
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-568 (Spring 2025)

License Information for Reinforcement Learning (EE-568)

▷ This work is released under a Creative Commons License with the following terms:
▷ Attribution

▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

▷ Non-Commercial
▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the

work for commercial purposes – unless they get the licensor’s permission.
▷ Share Alike

▶ The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor’s work.

▷ Full Text of the License

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 2/ 57

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Overview of reinforcement learning approaches

◦ Value-based RL
▶ Learn the optimal value functions V ⋆, Q⋆

(or the best approximation Vθ⋆ , Qθ⋆)
▶ Generate the optimal policy

π⋆(a|s) = arg max
a∈A

Q⋆(s, a)

▶ Algorithms: Monte Carlo, SARSA, Q-learning, etc.

◦ Policy-based RL
▶ Learn the optimal policy π⋆

◦ Model-based RL
▶ Learn the model P and r and then do planning

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 3/ 57

Value-based methods

◦ Advantages
▶ Easy to generate policy from the learned value function [19], e.g., via greedy selections.
▶ Controlling the bias-variance tradeoff (e.g., via MC or TD(n)) is well-studied [29, 28, 7].
▶ We have good theory for tabular and linear function approximation settings [26, 23].

◦ Disadvantages:
▶ Do not scale to high-dimensional or continuous action spaces [15].
▶ Instability with off-policy learning under function approximation [2, 5, 4].

▶ Combining TD-learning, function approximation, and off-policy learning is sometimes called the deadly triad [24].

▶ A small value error may lead to a large policy error [19].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 4/ 57

Optimization formulation for policy-based methods

◦ Idea: Parameterize the policy as πθ(a|s) and then find the best parameter θ maximizing the cumulative reward

Policy optimization
We write an optimization formulation that will be used by the policy-based methods in the sequel as follows:

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)].

Observations: ◦ Here µ is the initial state distribution.

◦ ⋆Alternatively, one may consider the average reward objective:

Javg(πθ) = lim infT →∞E

[
1
T

T −1∑
t=0

r(st, at)|s0 ∼ µ, πθ

]
,

which we do not cover in this lecture.

◦ Stochastic policies: πθ(a|s) = P(a|s, θ) is a distribution over the action space.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 57

How to parameterize policies for discrete actions?
◦ In general, we choose a parameterization that gives us an advantage

▶ Direct parameterization

πθ(a|s) = θs,a, where θs,a ≥ 0 and
∑
a∈A

θs,a = 1.

▶ Softmax parameterization

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′)
, where θ ∈ R|A|×|S|.

▶ Log-linear parameterization

πθ(a|s) =
exp (θ · ϕ(s, a))∑

a′∈A exp (θ · ϕ(s, a′))
, where ϕ(s, a) ∈ Rd and θ ∈ Rd.

▶ Neural softmax parameterization

πθ(a|s) =
exp (hθ(s, a))∑

a′∈A exp (hθ (s, a′))
, where hθ(s, a) represents a neural network.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 6/ 57

How to parameterize policies for continuous actions?

◦ Continuous probability distributions: Gaussian, Beta, Dirichlet, etc.

Example
For example, we can use the Gaussian parameterization as follows

πθ(a|s) =
1

√
2πσθ(s)

exp
(
−

(a− µθ(s))2

2σθ(s)2

)
where µθ(s), σθ(s) are two differentiable function approximators.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 57

How to optimize over the given policy parameterization?

◦ Gradient-free methods
▶ Hill climbing [20]
▶ Simulated annealing [13]
▶ Evolutionary strategies [16, 21]
▶

◦ Gradient-based methods (our focus)
▶ Policy gradient method [25]
▶ Natural policy gradient method [10]
▶

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 57

How to optimize over the given policy parameterization?

Policy space Π vs parameter space Θ (figure from [27])

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 57

Policy gradient method

◦ In general, we cannot exactly compute the gradient ∇θJ(πθ) of the objective.

◦ A natural idea is to consider stochastic gradients:

θt+1 ←− θt + αt∇̂θJ(πθt),

where ∇̂θJ(πθt) is a stochastic estimate of the gradient ∇θJ(πθ) at θt.

Q1: How do we construct a good estimate of ∇θJ(πθ)?

Q2: Where does it converge to and how fast?

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 57

Monte Carlo estimation

◦ Consider the following objective: F (θ) = Eξ∼p(ξ)[f(θ, ξ)].

◦ Applying the Leibniz integral rule, the gradient of the objective can be written as

∇θF (θ) = ∇θ

∫
f(θ, ξ)p(ξ)dξ =

∫
∇θf(θ, ξ)p(ξ)dξ = Eξ∼p(ξ)[∇θf(θ, ξ)].

◦ Here are some unbiased gradient estimators (single-sample and batch):

∇̂θF (θ) = ∇θf(θ, ξ), where ξ ∼ p(ξ).

∇̂θF (θ) =
1
n

∑n

i=1
∇θf(θ, ξi), where ξ1, . . . , ξn ∼ p(ξ).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 57

Monte Carlo estimation with score functions

◦ Now, consider the following parameterization: F (θ) = Eξ∼pθ(ξ)[f(ξ)].

◦ The gradient of the parameterization can be written as

∇θF (θ) =
∫

f(ξ)∇θpθ(ξ)dξ =
∫

pθ(ξ)f(ξ)∇θ log pθ(ξ)dξ = Eξ∼pθ(ξ)[f(ξ)∇θ log pθ(ξ)].

◦ Here are some unbiased gradient estimators (single-sample and batch):

∇̂θF (θ) = f(ξ)∇θ log pθ(ξ), where ξ ∼ pθ(ξ).

∇̂θF (θ) =
1
n

∑n

i=1
f(ξi)∇θ log pθ(ξi), where ξ1, . . . , ξn ∼ pθ(ξ).

Remarks: ◦ The term ∇θ log pθ(ξ) is called the score function.

◦ For further explanation on score function, please see these EE-556 slides [6].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 57

https://www.epfl.ch/labs/lions/wp-content/uploads/2025/02/lecture_12_2024.pdf

Parametric policy optimization
◦ We would like to express J as a function of trajectories drawn from the parameterized distribution.

◦ Recall the discounted cumulative reward objective:

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Eτ∼pθ

[R(τ)],

where R(τ) =
∑∞

t=0 γtr(st, at) is the total reward over the random trajectory.

Observations: ◦ τ = (s0, a0, s1, . . .) is a random trajectory with probability distribution pθ.
◦ This distribution pθ corresponds to the unique Markov process defined via

s0 ∼ µ(·),
at ∼ πθ(·|st), (t = 0, 1, . . .);

st+1 ∼ P(·|st, at), (t = 0, 1, . . .).

◦ We have ∇θJ(πθ) = Eτ∼pθ
[R(τ) · ∇θ log pθ(τ)].

◦ Note that ∇θ log pθ(τ) =
∑∞

t=0∇θ log πθ(at|st).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 13/ 57

Derivation–I
◦ Step 1: Define the objective to maximize expected cumulative reward:

J(πθ) = Eτ∼πθ [R(τ)] =
∑

τ

p(τ |θ)R(τ),

where the trajectory probability is given by:

pθ(τ) := p(τ |θ) = p(s0)
∞∏

t=0

πθ(at|st)P(st+1|st, at).

◦ Step 2: Compute the gradient with respect to the policy parameters θ:

∇θJ(πθ) = ∇θ

[∑
τ

p(τ |θ)R(τ)

]
=
∑

τ

R(τ)∇θp(τ |θ),

where we apply the log-derivative trick (∇θf(θ) = f(θ)∇θ log f(θ)) to obtain the following:

∇θJ(πθ) =
∑

τ

p(τ |θ)R(τ)∇θ log p(τ |θ) = Eτ∼πθ [R(τ)∇θ log p(τ |θ)]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 14/ 57

Derivation–II

◦ Step 3: Simplify the gradient by substituting the log of the trajectory probability:

log p(τ |θ) = log p(s0) +
∞∑

t=0

log πθ(at|st) +
∞∑

t=0

log P(st+1|st, at),

and note that since log p(s0) and log p(st+1|st, at) do not depend on θ, their gradients vanish:

∇θ log p(τ |θ) =
∞∑

t=0

∇θ log πθ(at|st),

resulting in the expression we will use in the sequel:

∇θJ(πθ) = Eτ∼πθ

[
R(τ)

∞∑
t=0

∇θ log πθ(at|st)

]
.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 57

Policy gradient theorem (version 1): REINFORCE expression

Policy gradient theorem (REINFORCE) [30]
In the paper by Williams in 1992, the acronym REINFORCE stands for “REward Increment = Nonnegative
Factor times Offset Reinforcement times Characteristic Eligibility.” It encapsulates the essence of the method
that computes the gradient:

∇θJ(πθ) = Eτ∼pθ

[
R(τ)

(
∞∑

t=0

∇θ log πθ(at|st)

)]
. (1)

Remarks: ◦ The term ∇θ log πθ(a|s) = ∇θπθ(a|s)
πθ(a|s) is called the score function.

◦ For differentiable policies, the score function can often be easily computed.

◦ For example, for log-linear parameterization πθ(a|s) = exp(θ·ϕ(s,a))∑
a′∈A

exp(θ·ϕ(s,a′))
, we have

∇θ log πθ(a|s) = ϕ(s, a)− Ea∼πθ(·|s)[ϕ(s, a)].

◦ Note that Ea∼πθ(·|s)[∇θ log πθ(a|s)] = 0. (Why?)

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 57

Policy gradient estimator

REINFORCE estimator
Given that we expressed J as a function of trajectories drawn from the parameterized distribution, we can use
the following recipe:
▶ Generate an episode τ = (s0, a0, r0, s1, . . .) from policy πθ;
▶ Construct ∇̂θJ(πθ) =

(∑∞
t=0 γtrt

)
·
(∑∞

t=0∇θ log πθ(at|st)
)

.

Remarks: ◦ A single trajectory under πθ is enough to obtain an unbiased policy gradient estimator.

◦ It is achieved without the knowledge of the transition probabilities.

◦ REINFORCE has a high variance due to the environment’s randomness.

◦ Notice that πθ(at2 |st2) does not affect
∑t1

t=0 r(st, at) if t2 > t1.

▶ We will use this observation to come up with a second version of the policy gradient theorem.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 17/ 57

Policy gradient estimator

REINFORCE estimator
Given that we expressed J as a function of trajectories drawn from the parameterized distribution, we can use
the following recipe:
▶ Generate an episode τ = (s0, a0, r0, s1, . . .) from policy πθ;
▶ Construct ∇̂θJ(πθ) =

(∑∞
t=0 γtrt

)
·
(∑∞

t=0∇θ log πθ(at|st)
)

.

Remarks: ◦ A single trajectory under πθ is enough to obtain an unbiased policy gradient estimator.

◦ It is achieved without the knowledge of the transition probabilities.

◦ REINFORCE has a high variance due to the environment’s randomness.

◦ Notice that πθ(at2 |st2) does not affect
∑t1

t=0 r(st, at) if t2 > t1.

▶ We will use this observation to come up with a second version of the policy gradient theorem.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 17/ 57

Policy gradient theorem (version 2): Action-value expression

Policy gradient theorem (Action-value function)
We can express the gradient of the objective in terms of the action-value as well as the score functions as follows:

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γtQπθ (st, at)∇θ log πθ(at|st)

]
. (2)

Remarks: ◦ Using the fact that E[X] = E[E[X|Y]], we can rewrite the action-value expression as follows:

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

(∞∑
t′=t

γt′
r(st′ , at′)

)
∇θ log πθ(at|st)

]
. (Reward2Go)

◦ Recall the REINFORCE expression, which is given by

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

(∞∑
t′=0

γt′
r(st′ , at′)

)
∇θ log πθ(at|st)

]
. (REINFORCE)

◦ If the policy πθ can not be applied to the environment, we can estimate Qπθ via OPE.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 18/ 57

Policy gradient estimator using reward-to-go

Gradient estimator using reward-to-go
Given that we expressed J as a function of trajectories drawn from the parameterized distribution, we can use
the following recipe:
▶ Generate an episode τ = (s0, a0, r0, s1, . . .) from policy πθ;
▶ Construct ∇̂θJ(πθ) =

∑∞
t=0 γtGt · ∇θ log πθ(at|st), where Gt =

∑∞
i=t

γi−tri.

Remarks: ◦ The expression above is an unbiased estimator of the policy gradient.

◦ This estimator is not necessarily cheaper than REINFORCE.

◦ Reward-to-go ensures that each action is reinforced based on only the future rewards it contributes.

▶ Early actions have little effect on the later rewards.

▶ Actions are updated based only on their individual, relevant impact.

▶ Policy optimization is more directed and is more effective.

◦ Unfortunately, this estimator might still have a high variance.

◦ Next, we will introduce a way to reduce variance.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 19/ 57

Policy gradient estimator using reward-to-go

Gradient estimator using reward-to-go
Given that we expressed J as a function of trajectories drawn from the parameterized distribution, we can use
the following recipe:
▶ Generate an episode τ = (s0, a0, r0, s1, . . .) from policy πθ;
▶ Construct ∇̂θJ(πθ) =

∑∞
t=0 γtGt · ∇θ log πθ(at|st), where Gt =

∑∞
i=t

γi−tri.

Remarks: ◦ The expression above is an unbiased estimator of the policy gradient.

◦ This estimator is not necessarily cheaper than REINFORCE.

◦ Reward-to-go ensures that each action is reinforced based on only the future rewards it contributes.

▶ Early actions have little effect on the later rewards.

▶ Actions are updated based only on their individual, relevant impact.

▶ Policy optimization is more directed and is more effective.

◦ Unfortunately, this estimator might still have a high variance.

◦ Next, we will introduce a way to reduce variance.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 19/ 57

Policy gradient theorem (version 3): Baseline expression

Policy gradient theorem (Baseline)
For any function b : S → R, we have

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γt[Qπθ (st, at)− b(st)]∇θ log πθ(at|st)

]
. (3)

Recall version 2 of the policy gradient theorem where we have the above expression but with b(st) = 0.

Remarks: ◦ For any baseline b(s) that does not depend on the actions:

Ea∼πθ [b(s)∇θ log πθ(a|s)] = 0.

◦ A natural choice of baseline is the value function: b(s) = V πθ (s).

◦ We call Aπθ (s, a) := Qπθ (s, a)− V πθ (s) the advantage function.

◦ Mainly employed as a variance reduction mechanism.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 20/ 57

Proof of baseline expression

Derivation: ◦ Notice that
∑

a
πθ(a|s) = 1 for any s ∈ S.

◦ For any b(s) that is independent of actions, we have the following:

Ea∼πθ(·|s) [b(s)∇θ log πθ(a|s)] = b(s)
∑

a

πθ(a|s)
∇θπθ(a|s)

πθ(a|s)

= b(s)
∑

a

∇θπθ(a|s)

= b(s)∇θ

∑
a

πθ(a|s)

= b(s)∇θ1
= 0.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 21/ 57

Summary: Policy gradient theorem (versions 1–3)

◦ REINFORCE expression:

∇θJ(πθ) = Eτ∼pθ

[
R(τ)

(∞∑
t=0

∇θ log πθ(at|st)
)]

.

◦ Action-value expression:

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γtQπθ (st, at)∇θ log πθ(at|st)

]
.

◦ Baseline expression:

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γt[Qπθ (st, at)− b(st)]∇θ log πθ(at|st)

]
.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 22/ 57

Example: Policy gradient learns cartpole

◦ The OpenAI Gym library provides a collection of environments for RL research.

◦ One of them is called the cartpole.

▶ The goal is to balance a stick on a cartpole as long as possible, by moving it to the left or right.

Figure: Cartpole environment. Actions are left (0) and right (1), the state is the position and velocity of the cart, and the angle
and angular velocity of the pole (all encoded as floats). The episode ends when the pole is more than ±12◦ from vertical, or
the cart moves more than 2.4 units from the center. Reward +1 for every step taken without terminating.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 23/ 57

Example: Policy gradient learns cartpole (cont’d)

◦ We train an agent with neural softmax parameterization to solve this task.

▶ Each time, we use a different version 1, 2 or 3 of the policy gradient theorem to build a gradient estimate.

Figure: Learning curves for the cartpole environment

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 24/ 57

Example: Policy gradient learns cartpole (cont’d)

Figure: Learning curves for a different run and without stopping when the policy seems to have converged.

Remarks: ◦ The learning curves are only across one training run, explaining the large variance.

◦ Practical RL depends a lot on hyper-parameters, initialization and engineering tricks.

◦ The baseline we used is handcrafted not trained (negatively correlated with the pole angle).

◦ This is a very simple problem and we used a small feedforward NN.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 25/ 57

Example: Policy gradient learns cartpole (cont’d)

Figure: Learning curves for a different run and without stopping when the policy seems to have converged.

◦ Self-exercise: Use the notebook we provide and check the learning curves and cartpole videos they generate.

▶ See moodle for the corresonding notebook. We recommend using Google Colab.
▶ Play around with the hyper-parameters (learning rate, discount factor, etc.).
▶ Try different baseline functions, and then try to use a learned one given by a NN (not handcrafted).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 25/ 57

Policy gradient theorem (versions 4–5)

◦ Recall that the discounted state visitation distribution under a given policy π is given as below:

λπ
µ(s) = (1− γ)

∞∑
t=0

γtP[st = s|s0 ∼ µ, π].

Policy gradient theorem via occupancy measures
▶ Action-value expression:

∇θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Qπθ (s, a)∇θ log πθ(a|s)]

]
. (4)

▶ Advantage expression:

∇θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Aπθ (s, a)∇θ log πθ(a|s)]

]
. (5)

Remark: ◦ The proof follows immediately based on the definition of λπ
µ(s).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 26/ 57

Policy gradient theorem (versions 4–5): Remarks

◦ Constructing unbiased stochastic policy gradients requires sampling from λπ
µ(s) (versions 4–5).

◦ This can be achieved by generating (sT , aT) with a random horizon T ∼ Geometric(1− γ).

▶ Indeed, it holds that

P[sT = s|s0 ∼ µ, π] =
∞∑

t=0

γt(1−γ)P[st = s|s0 ∼ µ, π] = (1−γ)E

[
∞∑

t=0

γt1{st = s}|s0 ∼ µ, π

]
= λπ

µ(s).

◦ Unbiased estimator of Aπθ (s, a) requires two random rollouts to estimate Qπθ (s, a) and V πθ (s), separately.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 27/ 57

Exercise: Policy gradient under tabular parameterization

◦ Compute policy gradient under the direct and softmax parameterization in the tabular setting.

Direct parameterization
In direct parameterization, the policy is given by

πθ(a|s) = θs,a,

where θs,a ≥ 0 and
∑

a∈A θs,a = 1.

Softmax parameterization
In softmax parameterization, the policy is given by

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′)
,

where θ ∈ R|A|×|S|.

Exercise: ◦ Derive ∂J(πθ)
∂θs,a

via the chain-rule (the solutions are on the slide 34).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 28/ 57

Monte Carlo policy gradient method

REINFORCE: Monte-Carlo policy-gradient method
Initialize the policy parameter θ1 ∈ Rd, the step-size α > 0, the baseline function
b(·). Choose a total number of episodes E, i.e., the number of gradient updates.
for e = 1, . . . , E do

Generate an episode s0, a0, r0, ..., sT , aT , rT following πθ using the chosen pa-
rameterization. Initialize the gradient estimate ∇̂J(θe) = 0.
for each step t = 0, 1, ..., T of the episode do

Compute return Gt ←
∑T

i=t
γi−tri à la Reward2Go

Compute advantage estimate At ← Gt − b(st)

∇̂J(θe)← ∇̂J(θe) + γtAt · ∇θ log πθ(at|st) à la Reward2Go
end for
θe+1 ← θe + α∇̂J(θe) note that the step-size might depend on e

end for

Remarks: ◦ The policy is updated only after generating a whole trajectory, which may not be efficient.

◦ We can use the idea of temporal difference learning to build policy gradient estimators.
Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 29/ 57

Policy gradient method with value function estimation

Online actor-critic algorithm
Initialize θ0, w0, state s0 ∼ µ,a0 ∼ πθ0 (·|s0)
for each step t = 0, 1, ..., T of the episode do

Obtain (rt, st+1, at+1) from πθt

Compute temporal difference: δt = rt + γQwt (st+1, at+1)−Qwt (st, at)
Compute policy gradient estimator:

∇̂θJ(πθt) = Qwt (st, at)∇θ log πθt (at | st)

Update θ: θt+1 = θt + α∇̂θJ(πθt)
Update w: wt+1 = wt − βδt∇wQwt (st, at)

end for

Remarks: ◦ Approximating the value function in policy gradient introduces extra bias.

◦ There are various ways to estimate the advantage function [22].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 30/ 57

Summary: Policy gradient methods
◦ Advantages
▶ Directly optimize policy parameters (but still need to evaluate value functions)
▶ Can deal with high-dimensional and continuous action spaces
▶ Can learn stochastic policies

◦ Optimization Challenges:
▶ Nonconcave landscape (in general, only converge to stationary points)
▶ Sensitive to stepsize choice
▶ High variance/bias of the policy gradient estimators

Figure: A non-convex function. (a) and (c) are plateaus, (b) and (d) are global minima, (f) and (h) are local minima, (e) and
(g) are local maxima. [9]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 31/ 57

Recap: Policy-based methods

Policy optimization
In policy optimization, we seek to obtain numerical solutions to the following objective function:

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)].

Tabular parameterization
▶ Direct :

πθ(a|s) = θs,a, with θs,a ≥ 0,
∑

a
θs,a = 1.

▶ Softmax:

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′)
.

Non-tabular parameterization
▶ Softmax:

πθ(a|s) =
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))
.

▶ Gaussian:

πθ(a|s) ∼ N
(

µθ(s), σ2
θ(s)
)

.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 32/ 57

Recap: Policy gradient theorems

◦ Recall that pθ(τ) is the trajectory distribution and λπ
µ(s) is the discounted state visitation distribution.

Policy gradient theorems
▶ REINFORCE expression is given by

∇θJ(πθ) = Eτ∼pθ

[
R(τ)

(∞∑
t=0

∇θ log πθ(at|st)
)]

.

▶ Action-value expression is given by

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γtQπθ (st, at)∇θ log πθ(at|st)

]
=

1
1− γ

E
s∼λ

πθ
µ ,a∼πθ(·|s) [Qπθ (s, a)∇θ log πθ(a|s)] .

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 33/ 57

Policy gradient in tabular setting (solution)

◦ Direct parameterization: πθ(a|s) = θs,a,

∂J(πθ)
∂θs,a

=
1

1− γ
λ

πθ
µ (s)Qπθ (s, a).

◦ Softmax parameterization: πθ(a|s) ∝ exp(θs,a),

∂J(πθ)
∂θs,a

=
1

1− γ
λ

πθ
µ (s)πθ(a|s)Aπθ (s, a).

Proofs: ◦ Recall that ∇θJ(πθ) = 1
1−γ

∑
s

λ
πθ
µ (s)

∑
a

Qπθ (s, a)∇θπθ(a|s).

◦ Direct case: ∂πθ(a|s)
∂θs′,a′

= 1{s = s′, a = a′}.

◦ Softmax case: ∂πθ(a|s)
∂θs′,a′

= πθ(a|s)1{s = s′, a = a′} − πθ(a|s)πθ(a′|s)1{s = s′}.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 34/ 57

Optimization challenge I: Nonconcavity

◦ In general, the objective J(πθ) is nonconcave.

◦ This holds even for the tabular setting with direct or softmax parameterization.

a1: move up, a2: move right

Example (direct parameterization)

V π(s1) = π(a2|s1)π(a1|s2)r.

▶ Consider πmid = π1+π2
2 , where

π1(a2|s1) = 3/4, π1(a1|s2) = 3/4;
π2(a2|s1) = 1/4, π2(a1|s2) = 1/4;
πmid(a2|s1) = 1/2, πmid(a1|s2) = 1/2.

▶ V π1 (s1) = 9
16 r, V π2 (s1) = 1

16 r.

▶ V πmid (s1) = 1
4 r < 1

2 (V π1 (s1) + V π2 (s1)).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 35/ 57

Optimization challenge I: Nonconcavity

◦ In general, the objective J(πθ) is nonconcave.

◦ This holds even for tabular setting with direct or softmax parameterization.

a1: move up, a2: move right

Example (softmax parameterization)

θ = (θa1,s1 , θa2,s1 , θa1,s2 , θa2,s2),

V πθ (s1) =
eθa2,s1

eθa1,s1 + eθa2,s1

eθa1,s2

eθa1,s2 + eθa2,s2
r.

▶ Consider

θ1 = (log 1, log 3, log 3, log 1),
θ2 = (− log 1,− log 3,− log 3,− log 1),
θmid = (θ1 + θ2)/2 = (0, 0, 0, 0).

▶ V πθ1 (s1) = 9
16 r, V πθ2 (s1) = 1

16 r.

▶ V
πθmid (s1) = 1

4 r < 1
2 (V πθ1 (s1) + V πθ2 (s1)).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 36/ 57

Convergence to stationary points (see Lecture 1)

Convergence of exact policy gradient method: θt+1 = θt + αt∇θJ(πθt) (Nesterov, 2004 [18])
If the objective J(πθ) is L-smooth and set αt = 1

L
, then we have the following guarantee:

min
t=0,...,T −1

∥∇θJ(πθt)∥2
2 ≤

2L(J(πθ⋆)− J(πθ0))
T

.

Convergence of stochastic policy gradient method: θt+1 = θt + αt∇̂θJ(πθt
)

(Ghadimi and Lan, 2013 [8])
If the objective J(πθ) is L-smooth and ∇̂θJ(πθ) is unbiased and has bounded variance by σ2, then with a
proper choice of the step-size, we have the following guarantee:

min
t=0,...,T −1

E
[
∥∇θJ(πθt)∥2

2
]

= O

(√
L(J(πθ⋆)− J(πθ0))σ2

T

)
.

Questions: Can these rates be further improved? Do stationary points imply good performance?

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 37/ 57

Optimization challenge II: Vanishing gradient and saddle points

◦ In general, there are no guarantees on the quality of stationary points.

◦ Vanishing gradients can happen when using softmax parameterization.

◦ Vanishing gradients can happen when lacking sufficient exploration [1].

Figure: Softmax function: eθ

1+eθ = 1
1+e−θ .

Figure: Example with H + 2 states and γ = H
H+1 : rewards are

everywhere 0 except at sH+1. For small order p and θ such
that θs,a1 < 1

4 for all s [1]: ∥∇pV πθ (s0)∥ ≤
(

1
3

)H/4
.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 38/ 57

A simple example

Figure: MDP with 2 states and 2 actions

Figure: V π(B) under direct parameterization

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 39/ 57

A simple example (cont’d)

Figure: PG with different initial points
Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 40/ 57

A simple example (cont’d)

Figure: PG with different stepsizes
Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 41/ 57

Fundamental questions

Question 1
When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: ◦ Optimization wisdom: GD/SGD could converge to the global optima for “convex-like” functions:

J(π⋆)− J(π) = O(∥∇J(π)∥).

◦ We focus on the tabular setting with exact gradients.

Question 2
How can we avoid vanishing gradients and improve the convergence?

Remarks: ◦ Optimization wisdom: Use divergence with good curvature information.

◦ Switch to natural policy gradient by exploiting geometry.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 42/ 57

Performance difference lemma (PDL)

Performance difference lemma (Kakade and Langford, 2002 [11])
For any two policy π, π′, the following holds

J(π)− J(π′) =
1

1− γ
Es∼λπ

µ, a∼π(·|s)
[
Aπ′

(s, a)
]

.

The difference in expected returns between two policies π and π′ depends on how the new policy π samples
actions compared to the advantage function of the old policy π′, weighted by the state distribution λπ

µ(s):

▶ If Aπ′ (s, a) > 0 for actions that π selects more often, then J(π) > J(π′), i.e., π improves upon π′.
▶ If Aπ′ (s, a) < 0 for actions that π selects more often, then π performs worse than π′.
▶ If π is a small update from π′, this lemma helps approximate the expected improvement.

Remarks: ◦ Here λπ
µ(s) = (1− γ)E[

∑∞
t=0 γt1{st=s}|s0 ∼ µ, π] is the state visitation distribution.

◦ Here Aπ(s, a) = Qπ(s, a)− V π(s) is the advantage function.

◦ ⋆Can be used to show policy improvement theorem for policy iteration (self-exercise).

◦ ⋆Can also be used to show policy gradient theorem (self-exercise).

◦ Proof follows from the definition of value functions (see supplementary material, slide 11).
Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 43/ 57

Key insight: Policy optimization is convex-like in the full policy space

◦ Performance difference lemma:

J(π⋆)− J(π) =
1

1− γ

∑
s

λπ⋆

µ (s)
∑

a

π⋆(a|s)Aπ(s, a).

◦ Policy gradient theorem (tabular setting):

∂J(π)
∂π(a|s)

=
1

1− γ
λπ

µ(s)Qπ(s, a) (direct parameterization).

∂J(π)
∂π(a|s)

=
1

1− γ
λπ

µ(s)π(a|s)Aπ(s, a) (softmax parameterization).

◦ This seems to imply gradient dominance type properties:

J(π⋆)− J(π) = O(max
π̄∈∆

⟨π̄ − π,∇J(π)⟩),

which is crucial to ensure global optimality.

▶ ⋆Closely related to the Łojasiewicz inequality, which is more nuanced.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 44/ 57

⋆Policy optimization (direct parameterization)

◦ We first consider the direct parameterization in the tabular setting.

Policy optimization under direct parameterization

max
π∈∆(A)|S|

J(π) := Es∼µ[V π(s)],

where ∆(A)|S| = {π : π(a|s) ≥ 0,
∑

a∈A π(a|s) = 1, ∀s}. For brevity, we denote this set as ∆.

Remarks: ◦ If π ∈ ∆ is optimal, then it satisfies the first-order optimality condition:

⟨π̄ − π,∇J(π)⟩ ≤ 0, ∀ π̄ ∈ ∆,

or equivalently, maxπ̄∈∆ ⟨π̄ − π,∇J(π)⟩ = 0.

◦ Does the reverse statement hold?

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 45/ 57

⋆Gradient dominance property

Gradient mapping domination
For any policy π, we have

J(π⋆)− J(π) ≤
∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
·max

π̄∈∆
⟨π̄ − π,∇J(π)⟩.

Remarks: ◦ This shows that J(π) satisfies the Polyak-Łojasiewicz (PL) condition [12].

◦ Any first-order stationary point is thus globally optimal
(maxπ̄∈∆ ⟨π̄ − π,∇J(π)⟩ = 0⇒ J(π) = J(π⋆)).

◦ The term
∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞

is called the distribution mismatch coefficient.

▶ This coefficient captures the hardness of the exploration problem.

▶ Note that in the vanishing gradient example, this coefficient can be exponentially large.

▶ Note that maxπ

∥∥∥λπ⋆
µ

λπ
µ

∥∥∥
∞

≤ 1
1−γ

∥∥∥λπ⋆
µ
µ

∥∥∥
∞

, since ∀π, λπ
µ(s) ≥ (1 − γ)µ(s).

◦ Proof via performance difference lemma (see supplementary material, slide 12).
Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 46/ 57

Projected policy gradient method

Projected policy gradient method
By projected policy gradient method, we mean the iteration variant below

πt+1 = Π∆(πt + η∇J(πt)),

where the projection is given by Π∆(π) = arg minπ′∈∆ ∥π − π′∥2
2.

Remarks: ◦ Take a gradient ascent step and project onto the simplex set (can be computed efficiently).

◦ Generalized gradient mapping: G(πt) = 1
η

(πt+1 − πt), or equivalently, πt+1 = πt + ηG(πt).

◦ If π is optimal, then G(π) = 0.

◦ Convergence of the gradient mapping [17]: If J(π) is L-smooth, then we have

min
t≤T
∥G(πt)∥2

2 ≤
2L(J(π⋆)− J(π0))

T
.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 47/ 57

⋆Convergence of projected policy gradient method

Theorem (Agarwal et al., 2020 [1])
Assume access to exact gradients. Let η = (1−γ)3

2γ|A| . Then, the projected policy gradient method achieves the
following guarantee:

min
t<T

J(π⋆)− J(πt) ≤
8
√

γ|S||A|

(1− γ)3
√

T

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

.

Remarks: ◦ See supplementary material, slide 15 for the proof.

◦ We have large constants
√

|S||A|
(1−γ)3

∥∥λπ⋆

µ

µ

∥∥
∞

in the bound and a slow rate 1√
T

in T .

◦ In the tabular setting, VI or PI converges linearly, which is much faster.

◦ However: Linear convergence of PG can be shown with larger step-sizes through line-search [3].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 48/ 57

Policy optimization (softmax parameterization)

◦ We now consider the softmax parameterization in the tabular setting.

Policy optimization under softmax parameterization
Consider the objective

max
θ

J(πθ) := Es∼µ[V πθ (s)], where πθ(a|s) =
exp(θs,a)∑
a′ exp(θs,a′)

.

Softmax policy gradient method
By softmax policy gradient method, we mean the iteration variant below

θt+1 = θt + η∇θJ(πθt), where
∂J(θ)
∂θs,a

=
1

1− γ
λ

πθ
µ (s)πθ(a|s)Aπθ (s, a).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 49/ 57

⋆Convergence of softmax policy gradient method

Convergence of softmax policy gradient (Mei et al., 2020 [14])
Assume access to exact gradients, let η ≤ (1−γ)3

8 . Then, the iterates of the softmax policy gradient method
satisfy the following guarantee:

J(π⋆)− J(πθT
) ≤

16|S|
c2(1− γ)5T

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥2

∞

,

where c = [mins,t πθt (a⋆(s)|s)]−1 > 0.

Remark: ◦ See supplementary material, slide 17 for the derivation of the algorithm.

◦ The proof is similar to the one in the projected setting.

◦ Once more, we have a slow rate and large constants in the bound.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 50/ 57

Natural policy gradient method (NPG)

◦ Natural policy gradient (NPG) allows us to overcome the large constant in the convergence bound.

Natural policy gradient (Kakade, 2002 [10])
By natural policy gradient (NPG), we mean the following iteration variant below:

θt+1 = θt + η(Fθt)†∇J(πθt),

where
▶ Fθ is the Fisher information matrix:

Fθ = E
s∼λ

πθ
µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
.

▶ C† is the pseudoinverse of a matrix C.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 51/ 57

How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 52/ 57

How can we better adapt to the local geometry?

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 53/ 57

How can we better adapt to the local geometry?

�f(xk)

x1

x2
f(x)  f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

H�1
k

L is a global worst-case constant

krf(x)�rf(y)k  Lky � xk

f(x)

x

k+1 = argmin
x

⇢
f(xk) + hrf(xk),x� x

ki+ L

2
kx� x

kk22
�

f(xk)

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 54/ 57

NPG under softmax parameterization

◦ Under softmax parameterization, NPG allows closed-form updates that can be computed efficiently.

◦ Consider softmax parameterization πθ(a|s) = exp(θs,a)∑
a′ exp(θs,a′)

and denote πt = πθt .

◦ The policy update below shows that NPG then correponds to a policy mirror ascent update.

NPG update
Under softmax parameterization, NPG corresponds to the following parameter update involving the advantage
function Aπθt (s, a),

θt+1 = θt +
η

1− γ
Aπθt ,

which is equivalent to the following policy update:

πt+1(a|s) = πt(a|s)
exp(ηAπt (s, a)/(1− γ))∑

a′ πt(a′|s) exp(ηAπt (s, a′)/(1− γ))
.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 55/ 57

Convergence of NPG under softmax parameterization

Convergence of NPG with softmax parameterization [1]
Assume access to the advantage function Aπθ . For any η ≥ (1− γ)2 log |A| and T > 0, NPG with softmax
parameterization satisfies the following guarantee:

J(π⋆)− J(πθT
) ≤

2
(1− γ)2T

.

Remarks: ◦ We have dimension-free convergence, i.e. no dependence on |A|, |S|.

◦ We have no dependence on distribution mismatch coefficient.

Questions: Why? What about the function approximation setting? Can we further improve the
convergence?

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 56/ 57

Next week!

◦ Recap on policy gradient methods

◦ A deeper look at the natural policy gradient method

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 57/ 57

References I

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan.
Optimality and approximation with policy gradient methods in markov decision processes.
In Conference on Learning Theory, pages 64–66. PMLR, 2020.
41, 51, 59, 75, 76

[2] Leemon Baird.
Residual algorithms: Reinforcement learning with function approximation.
In Machine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.
4

[3] Jalaj Bhandari and Daniel Russo.
On the linear convergence of policy gradient methods for finite mdps.
In International Conference on Artificial Intelligence and Statistics, pages 2386–2394. PMLR, 2021.
51, 76

[4] Justin A. Boyan and Andrew W. Moore.
Generalization in reinforcement learning: Safely approximating the value function.
In Advances in Neural Information Processing Systems 7, pages 369–376. MIT Press, 1995.
4

[5] Steven Bradtke.
Reinforcement learning applied to linear quadratic regulation.
In S. Hanson, J. Cowan, and C. Giles, editors, Advances in Neural Information Processing Systems, volume 5. Morgan-Kaufmann, 1992.
4

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 1/ 20

References II

[6] Volkan Cevher.
Lecture 4: The role of computation.
https://www.epfl.ch/labs/lions/wp-content/uploads/2025/02/Lecture_4_2024.pdf, 2024.
Accessed: 2025-02-21.
12

[7] P. Cichosz.
Truncating temporal differences: On the efficient implementation of td(lambda) for reinforcement learning, 1995.
4

[8] Saeed Ghadimi and Guanghui Lan.
Stochastic first- and zeroth-order methods for nonconvex stochastic programming.
SIAM Journal on Optimization, 23(4):2341–2368, 2013.
40

[9] Benjamin D Haeffele and René Vidal.
Global optimality in tensor factorization, deep learning, and beyond.
arXiv preprint arXiv:1506.07540, 2015.
34

[10] S. Kakade.
A natural policy gradient.
In Advances in Neural Information Processing Systems (NeurIPS), 2001.
8, 54

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 2/ 20

https://www.epfl.ch/labs/lions/wp-content/uploads/2025/02/Lecture_4_2024.pdf

References III

[11] Sham Kakade and John Langford.
Approximately optimal approximate reinforcement learning.
In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002.
46

[12] Hamed Karimi, Julie Nutini, and Mark Schmidt.
Linear convergence of gradient and proximal-gradient methods under the polyak-undefinedojasiewicz condition.
In European Conference on Machine Learning and Knowledge Discovery in Databases - Volume 9851, ECML PKDD 2016, pages 795–811, Berlin,
Heidelberg, 2016. Springer-Verlag.
49

[13] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi.
Optimization by simulated annealing.
science, 220(4598):671–680, 1983.
8

[14] Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans.
On the global convergence rates of softmax policy gradient methods.
In International Conference on Machine Learning, pages 6820–6829. PMLR, 2020.
53, 80

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 3/ 20

References IV

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015.
4

[16] David E Moriarty, Alan C Schultz, and John J Grefenstette.
Evolutionary algorithms for reinforcement learning.
Journal of Artificial Intelligence Research, 11:241–276, 1999.
8

[17] Yu Nesterov.
Gradient methods for minimizing composite functions.
Mathematical Programming, 140(1):125–161, 2013.
50, 74, 75

[18] Yurii Nesterov.
Introductory Lectures on Convex Optimization.
Kluwer, Boston, MA, 2004.
40

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 4/ 20

References V

[19] Satinder Singh Richard and Richard C. Yee.
An upper bound on the loss from approximate optimal-value functions.
In Machine Learning, pages 227–233, 1994.
4

[20] Stuart J Russell and Peter Norvig.
Artificial intelligence a modern approach.
2010.
8

[21] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.
Evolution strategies as a scalable alternative to reinforcement learning.
arXiv preprint arXiv:1703.03864, 2017.
8

[22] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438, 2015.
33

[23] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine learning, 38(3):287–308, 2000.
4

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 20

References VI

[24] Richard S Sutton, Andrew G Barto, et al.
Introduction to reinforcement learning, volume 135.
MIT press Cambridge, 1998.
4

[25] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al.
Policy gradient methods for reinforcement learning with function approximation.
In Conference on Neural Information Processing Systems, pages 1057–1063, 1999.
8

[26] V.B. Tadic.
On the almost sure rate of convergence of linear stochastic approximation algorithms.
IEEE Transactions on Information Theory, 50(2):401–409, 2004.
4

[27] Chen Tessler, Guy Tennenholtz, and Shie Mannor.
Distributional policy optimization: An alternative approach for continuous control.
Advances in Neural Information Processing Systems, 32:1352–1362, 2019.
9

[28] Harm van Seijen, Ashique Rupam Mahmood, Patrick M. Pilarski, Marlos C. Machado, and Richard S. Sutton.
True online temporal-difference learning.
CoRR, abs/1512.04087, 2015.
4

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 6/ 20

References VII

[29] Christopher John Cornish Hellaby Watkins.
Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, UK, May 1989.
4

[30] Ronald J Williams.
Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.
16

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 20

Supplementary Material
Deferred proofs

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 20

Proof of action-value expression

Proof
For any state s0, we have

∇V πθ (s0) = ∇
∑
a0

πθ (a0|s0) Qπθ (s0, a0) (by definition of Qπθ)

=
∑
a0

∇πθ (a0|s0) Qπθ (s0, a0) +
∑
a0

πθ (a0|s0)∇Qπθ (s0, a0) (by chain rule)

=
∑
a0

∇πθ (a0|s0) Qπθ (s0, a0) +
∑
a0

πθ (a0|s0)∇
(

r (s0, a0) + γ
∑

s1

P(s1|s0, a0)V πθ (s1)
)

=
∑
a0

πθ (a0|s0)∇ log πθ (a0|s0) Qπθ (s0, a0) + γ
∑
a0,s1

πθ (a0|s0) P (s1|s0, a0)∇V πθ (s1).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 20

Proof of action-value expression (cont’d)

Continued.
By induction, we have

∇θJ(πθ) =
∑

s0

µ(s0)∇V πθ (s0)

= Eτ∼pθ
[Qπθ (s0, a0)∇ log πθ (a0|s0)] + γEτ∼pθ

[∇V πθ (s1)]
= Eτ∼pθ

[Qπθ (s0, a0)∇ log πθ (a0|s0)] + γEτ∼pθ
[Qπθ (s1, a1)∇ log πθ (a1|s1)] + . . .

= Eτ∼pθ

[∞∑
t=0

γtQπθ (st, at)∇ log πθ(at|st)
]

.

□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 20

Proof of performance difference lemma

Derivation: V π(s)− V π′
(s) = Eτ∼pπ(τ)

[∞∑
t=0

γtr(st, at)|s0 = s
]
− V π′

(s)

= Eτ∼pπ(τ)
[∞∑

t=0

γt
(

r(st, at) + V π′
(st)− V π′

(st)
)
|s0 = s

]
− V π′

(s)

= Eτ∼pπ(τ)
[∞∑

t=0

γt
(

r(st, at) + γV π′
(st+1)− V π′

(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[∞∑
t=0

γt
(

r(st, at) + γEst+1∼P(·|st,at)[V π′
(st+1)]− V π′

(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[∞∑
t=0

γt
(

Qπ′
(st, at)− V π′

(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[∞∑
t=0

γtAπ′
(st, at)|s0 = s

]
Remark: ◦ We use a telescoping trick to go from line 2 to line 3!

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 20

Proof of gradient dominance

Derivation: J(π⋆)− J(π) =
1

1− γ

∑
s

λπ⋆

µ (s)
∑

a

π⋆(a|s)Aπ(s, a)

=
1

1− γ

∑
s

λπ⋆

µ (s)
λπ

µ(s)
λπ

µ(s)
∑

a

π⋆(a|s)Aπ(s, a)

≤
1

1− γ

∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆

∑
s,a

λπ
µ(s)π̄(a|s)Aπ(s, a)

=
1

1− γ

∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆

∑
s,a

λπ
µ(s)(π̄(a|s)− π(a|s))Aπ(s, a)

=
1

1− γ

∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆

∑
s,a

λπ
µ(s)(π̄(a|s)− π(a|s))Qπ(s, a)

=
∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆
⟨π̄ − π,∇J(π)⟩.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 20

Supplementary Material
Projected policy pradient and softmax policy gradient

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 13/ 20

Projected policy gradient method

Projected policy gradient method
By projected policy gradient method, we mean the iteration variant below

πt+1 = Π∆(πt + η∇J(πt)),

where the projection is given by Π∆(π) = arg minπ′∈∆ ∥π − π′∥2
2.

Remarks: ◦ Take a gradient ascent step and project onto the simplex set (can be computed efficiently).

◦ Generalized gradient mapping: G(πt) = 1
η

(πt+1 − πt), or equivalently, πt+1 = πt + ηG(πt).

◦ If π is optimal, then G(π) = 0.

◦ Convergence of the gradient mapping [17]: If J(π) is L-smooth, then we have

min
t≤T
∥G(πt)∥2

2 ≤
2L(J(π⋆)− J(π0))

T
.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 14/ 20

Convergence of projected policy gradient method

Theorem (Agarwal et al., 2020 [1])
Assume access to exact gradients. Let η = (1−γ)3

2γ|A| . Then, the following holds

min
t<T

J(π⋆)− J(πt) ≤
8
√

γ|S||A|

(1− γ)3
√

T

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

.

Proof sketch: ◦ Show that the objective J(π) is L-smooth with L = 2γ|A|
(1−γ)3 and J(π) ≤ 1

1−γ
.

◦ Invoke convergence on gradient mapping: mint≤T ∥G(πt)∥2
2 ≤

2L(J(π⋆)−J(π0))
T

.

◦ Invoke the relationship between gradient mapping and approximation of stationary point [17]:

max
π̄∈∆
⟨π̄ − πt+1,∇J(πt+1)⟩ ≤ (1 + Lη) · ∥G(πt)∥2 · ∥πt+1 − πt∥2.

◦ Use the gradient dominance for global convergence.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 20

A closer look at the convergence

Theorem (Agarwal et al., 2020 [1])
Assume access to exact gradients. Let η = (1−γ)3

2γ|A| . Then, the following holds

min
t<T

J(π⋆)− J(πt) ≤
8
√

γ|S||A|

(1− γ)3
√

T

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

.

Remarks: ◦ We have large constants in the bound and a slow rate in T .

◦ In the tabular setting, VI or PI converges linearly, which is much faster.

◦ However: Linear convergence of PG can be shown with larger step-sizes through line-search [3].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 20

A closer look at the PG method

◦ The projected PG update can also be viewed as

πt+1 := Π∆(πt + η∇J(πt))

= arg max
π∈∆

{
⟨∇J(πt), π⟩ −

1
2η
∥π − πt∥2

2

}
.

◦ As η →∞, this reduces to the policy iteration update:

πt+1(·|s) = arg max
π(·|s)∈∆(A)

∑
a

π(s|a)Qπt (s, a).

◦ In other words, the policy gradient method can be viewed as an approximation of policy iteration

arg max
π∈∆

{
⟨∇J(πt), π⟩ −

1
2η
∥π − πt∥2

2

}
= arg max

π∈∆

{
⟨Qπt , π⟩λπt

µ
−

1
2η′ ∥π − πt∥2

2

}
, (6)

where ∂J(π)
∂π(a|s) = 1

1−γ
λπ

µ(s)Qπ(s, a) and ⟨·, ·⟩λπ
µ

is the reweighted inner product by λπ
µ.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 17/ 20

From gradient descent to mirror descent: Exploiting the non-Euclidean geometry

◦ We can adapt PG in the simplex with mirror descent updates:

πt+1 := arg max
π∈∆

{
⟨∇J(πt), π⟩ −

1
η

∑
s

λπt
µ (s)KL (π(·|s)||πt(·|s))

}
,

where KL (p||q) =
∑

i
pi log

(
pi
qi

)
is the Kullback-Leibler divergence.

◦ The policy mirror descent update can be further simplified as

πt+1(a|s) = πt(a|s)
exp(ηQt(s, a)/(1− γ))∑

a′ πt(a′|s) exp(ηQt(s, a′)/(1− γ))
.

◦ We will see that this is the so-called natural policy gradient method under softmax parameterization.

◦ As η →∞, this also reduces to the policy iteration update.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 18/ 20

Policy optimization (softmax parameterization)

◦ We now consider the softmax parameterization in the tabular setting.

Policy optimization under softmax parameterization

max
θ

J(πθ) := Es∼µ[V πθ (s)], where πθ(a|s) =
exp(θs,a)∑
a′ exp(θs,a′)

.

Softmax policy gradient method

θt+1 = θt + η∇θJ(πθt), where
∂J(θ)
∂θs,a

=
1

1− γ
λ

πθ
µ (s)πθ(a|s)Aπθ (s, a).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 19/ 20

Gradient dominance and global convergence

Gradient dominance (Mei et al., 2020 [14])

J(π⋆)− J(πθ) ≤ [min
s

πθ(a⋆(s)|s)]−1√S ·

∥∥∥∥λπ⋆

µ

λ
πθ
µ

∥∥∥∥
∞

· ∥∇θJ(πθ)∥2.

Convergence of softmax policy gradient (Mei et al., 2020 [14])
Assume access to exact gradients, let η ≤ (1−γ)3

8 . Then, the following holds

J(π⋆)− J(πθT
) ≤

16|S|
c2(1− γ)5T

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥2

∞

,

where c = [mins,t πθt (a⋆(s)|s)]−1 > 0.

Remark: ◦ Proof follows similarly as the tabular setting with slow rate and large constants in the bound.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 20/ 20

	Overview of policy gradient methods
	Warm-up: Monte Carlo Gradient Estimator
	Policy Gradient Theorems
	REINFORCE Expression
	Action Value Expression
	Baseline Expression
	State Visitation Expression

	Stochastic Policy Gradient Methods
	Recap: Policy gradient methods
	Performance difference lemma
	Global Convergence of PG under Direct Parameterization
	Global Convergence of PG under Softmax Parameterization
	Appendix
	Global Convergence of PG under Softmax Parameterization

