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License Information for Reinforcement Learning (EE-568)

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

> Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor’s permission.
> Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

> Full Text of the License
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Overview of reinforcement learning approaches

o Value-based RL

> Learn the optimal value functions V*, Q*
(or the best approximation Vyx, Qg+)

> Generate the optimal policy

Actor
Value-based Critic | Policy-based

m*(a|s) = argmax Q*(s,a)
acA

> Algorithms: Monte Carlo, SARSA, Q-learning, etc.

o Policy-based RL

> Learn the optimal policy 7*

Model-based

o Model-based RL
> Learn the model P and r and then do planning
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Value-based methods

o Advantages

> Easy to generate policy from the learned value function [19], e.g., via greedy selections.
> Controlling the bias-variance tradeoff (e.g., via MC or TD(n)) is well-studied [29, 28, 7].

> We have good theory for tabular and linear function approximation settings [26, 23].

o Disadvantages:
> Do not scale to high-dimensional or continuous action spaces [15].
> Instability with off-policy learning under function approximation [2, 5, 4].
> Combining TD-learning, function approximation, and off-policy learning is sometimes called the deadly triad [24].

> A small value error may lead to a large policy error [19].
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Optimization formulation for policy-based methods
o Idea: Parameterize the policy as mg(a|s) and then find the best parameter  maximizing the cumulative reward

Policy optimization

We write an optimization formulation that will be used by the policy-based methods in the sequel as follows:

oo
max J(m9) := B | > y'r(se,ar)|so ~ 1,70 | = Banu[V7(s)].
t=0

Observations: o Here p is the initial state distribution.

o *Alternatively, one may consider the average reward objective:

T-1

Javg(7r0) = liminfpr_, E E r Stv at ‘50 ~ U, TG |,
t=0

which we do not cover in this lecture.

o Stochastic policies: mg(als) = P(als, 8) is a distribution over the action space.
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How to parameterize policies for discrete actions?

o In general, we choose a parameterization that gives us an advantage

> Direct parameterization

mp(als) = 0s,a, where 05, >0 and Z Os,a = 1.
acA

> Softmax parameterization
mg(als) = M, where 6 € RIAIXIST,
ZG/EA exp(es,a/)

> Log-linear parameterization
exp (60 - ¢(s,a))

= ;. wh ,a) € R% and 0 € R
mo(als) ZaleA o (0 9(s.2) where ¢(s,a) an

> Neural softmax parameterization

ro(als) — P (0(s:a)
Ea/GA €xXp (hg (57 a‘/))7

where hg(s, a) represents a neural network.
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How to parameterize policies for continuous actions?

o Continuous probability distributions: Gaussian, Beta, Dirichlet, etc.

Example

For example, we can use the Gaussian parameterization as follows

o (als) = L exp (_(‘1_“9(8))2)
\/ﬂag(s) 20¢(s)?

where pg(s), o9 (s) are two differentiable function approximators.
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How to optimize over the given policy parameterization?

o Gradient-free methods
> Hill climbing [20]
> Simulated annealing [13]

> Evolutionary strategies [16, 21]
> e

o Gradient-based methods (our focus)
> Policy gradient method [25]

> Natural policy gradient method [10]
> veee
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How to optimize over the given policy parameterization?

suboptimal
solution

optimal
solution
.

random initialization

11 Space

optimal
solution

suboptimal
solution

©® Space

Policy space II vs parameter space © (figure from [27])
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Policy gradient method

o In general, we cannot exactly compute the gradient Vg J(7g) of the objective.

o A natural idea is to consider stochastic gradients:
914,1 — 0 + atVQJ(ﬂ'gt),

where 69](7@%) is a stochastic estimate of the gradient VgJ(mg) at 6;.

Q1: How do we construct a good estimate of Vg .J(7y)?

Q2: Where does it converge to and how fast?
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Monte Carlo estimation

o Consider the following objective: F'(0) = E¢p)[f(0,€)].

o Applying the Leibniz integral rule, the gradient of the objective can be written as

VoF(0) = Ve/f(Gvé)P(f)dé = /Vef(eaﬁ)P(ﬁ)dé = Eep(e)[Va f(0,8)].

o Here are some unbiased gradient estimators (single-sample and batch):

VoF(0) = Vo f(6,£), where & ~ p(€).

VoF(©) = =" Tof(0,6), where &1,....n ~ p(E):
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Monte Carlo estimation with score functions

o Now, consider the following parameterization: F'(6) = E¢~p,(¢)[f(£)]-

o The gradient of the parameterization can be written as

VoF(0) = /f(é)Vepe(é)dE = /Pe(é)f(é)ve log pg (§)d€ = Bep, () [£(§) Vo log pg(£)]-

o Here are some unbiased gradient estimators (single-sample and batch):
VoF(0) = f(§)Vologpg(§), where & ~ py(§)-

VoF(©O) = = J(€)Vologpo(&i), where &1, & ~ py(6).

Remarks: o The term Vg logpy (&) is called the score function.

o For further explanation on score function, please see these EE-556 slides [6].
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Parametric policy optimization
o We would like to express J as a function of trajectories drawn from the parameterized distribution.

o Recall the discounted cumulative reward objective:

]

max J(mg) = E | Y 5'r(se,ar)lso ~ .70 | = Ermpy [R(7),
t=0
where R(7) = Zzo ~tr(st,at) is the total reward over the random trajectory.

Observations: o T = (sg, ao, s1,...) is a random trajectory with probability distribution p,.

o This distribution py corresponds to the unique Markov process defined via

S0 ~ /J‘()’
ag ~ mo(:|st), (t=0,1,...);
st41 ~ P(:|st,at), (t=0,1,...).

o We have Vg J(mg) = Ernp, [R(T) - Vg log pg(7)].
o Note that Vg logpy(7) = ZZO Vg logmg(at|st).
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Derivation—I

o Step 1: Define the objective to maximize expected cumulative reward:
J(79) = Ernmy [R(T)] = Y _ p(rI0)R(7),

where the trajectory probability is given by:
oo
po(7) == p(710) = p(s0) | [ ma(arls)P(sisalse,ar).

t=0

o Step 2: Compute the gradient with respect to the policy parameters 6:

VoJ(me) = Vo | > _p(TIOR()| =Y R(r)Vep(rl6),

T

where we apply the log-derivative trick (Vg f(0) = f(0)Vglog f(0)) to obtain the following:

VoJ(m0) = Y p(TI0)R(7)V10g p(T|0) = Ermm, [R(T) Vo log p(r|6)]

T
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Derivation—II

o Step 3: Simplify the gradient by substituting the log of the trajectory probability:
log p(7|0) = log p(so) Z log mg (at|st) + Z log P(s¢+1|st,at),
and note that since log p(sp) and log p(st+1|s¢, at) do not depend on 6, their gradients vanish:
Vo logp(r Z Vo logmg(at|st),

resulting in the expression we will use in the sequel:

VoI () = Bror,y |R(r) Y Vologmg(arlst)
t=0
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Policy gradient theorem (version 1): REINFORCE expression

Policy gradient theorem (REINFORCE) [30]

In the paper by Williams in 1992, the acronym REINFORCE stands for “REward Increment = Nonnegative
Factor times Offset Reinforcement times Characteristic Eligibility.” It encapsulates the essence of the method
that computes the gradient:

oo
V@J(W@) :ETNPG R(T) ng logTrg(at|st) o (1)
t=0
Remarks: o The term Vg logmg(a|s) = Yomolals) jg called the score function.

mo(als)
o For differentiable policies, the score function can often be easily computed.

exp(6-¢(s,a))

) —, we have
aleA exp(6-¢(s,a’))

o For example, for log-linear parameterization mg(als) =

Vo logmg(als) = ¢(s,a) — Eqgmng(|s)[(s, a)]-
o Note that E,r,(.|s)[Vo logmg(als)] = 0. (Why?)
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Policy gradient estimator

REINFORCE estimator

Given that we expressed J as a function of trajectories drawn from the parameterized distribution, we can use
the following recipe:

> Generate an episode T = (so, ag, 70, S1, - - .) from policy mg;

» Construct VeJ T9) (Zt 0? Tt) : (ZZO Vo 10g”9(0t|5t)) .

Remarks: o A single trajectory under 7y is enough to obtain an unbiased policy gradient estimator.
o It is achieved without the knowledge of the transition probabilities.

o REINFORCE has a high variance due to the environment’s randomness.

o Notice that mg(a¢,|st,) does not affect 2?:0 r(se,ar) if t2 > t1.
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Policy gradient estimator

REINFORCE estimator

Given that we expressed J as a function of trajectories drawn from the parameterized distribution, we can use
the following recipe:

> Generate an episode T = (so, ag, 70, S1, - - .) from policy mg;

» Construct VeJ T9) (Zt 0? Tt) : (ZZO Vo 10g”9(0t|5t)) .

Remarks: o A single trajectory under 7y is enough to obtain an unbiased policy gradient estimator.
o It is achieved without the knowledge of the transition probabilities.
o REINFORCE has a high variance due to the environment’s randomness.
. t .
o Notice that mg(a¢,|st,) does not affect Ztl:() r(se,ar) if t2 > t1.

> We will use this observation to come up with a second version of the policy gradient theorem.
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Policy gradient theorem (version 2): Action-value expression

Policy gradient theorem (Action-value function)

We can express the gradient of the objective in terms of the action-value as well as the score functions as follows:

oo
VoJ(79) = Brnpy | D 71'Q (51,a1) Vg log mo(acls:) | (2)
t=0
Remarks: o Using the fact that E[X] = E[E[X|Y]], we can rewrite the action-value expression as follows:
oo oo
VoJ(m9) = Ernp, Z (Z'yt r(5t17at/))V9 log mg (at|st) | - (REWARD2GO)
t=0 /=t

o Recall the REINFORCE expression, which is given by

o0 oo
Vo (m9) = Brmpy Z ( Z (s, a0)) Vo logma(arlst) | - (REINFORCE)
t=0 t'=0

o If the policy my can not be applied to the environment, we can estimate Q™9 via OPE.
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Policy gradient estimator using reward-to-go

Gradient estimator using reward-to-go

Given that we expressed J as a function of trajectories drawn from the parameterized distribution, we can use
the following recipe:
> Generate an episode T = (so, ao, 70, S1, - - .) from policy mg;

> Construct §9J(7r9) = E;’io VG - Vg log mg(at|st), where Gy = E;’; Nt

Remarks: o The expression above is an unbiased estimator of the policy gradient.
o This estimator is not necessarily cheaper than REINFORCE.
o Reward-to-go ensures that each action is reinforced based on only the future rewards it contributes.
> Early actions have little effect on the later rewards.
> Actions are updated based only on their individual, relevant impact.
> Policy optimization is more directed and is more effective.

o Unfortunately, this estimator might still have a high variance.
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Policy gradient estimator using reward-to-go

Gradient estimator using reward-to-go

Given that we expressed J as a function of trajectories drawn from the parameterized distribution, we can use
the following recipe:
> Generate an episode T = (so, ao, 70, S1, - - .) from policy mg;

> Construct §9J(7r9) = E;’io VG - Vg log mg(at|st), where Gy = E;’; Nt

Remarks: o The expression above is an unbiased estimator of the policy gradient.
o This estimator is not necessarily cheaper than REINFORCE.
o Reward-to-go ensures that each action is reinforced based on only the future rewards it contributes.
> Early actions have little effect on the later rewards.
> Actions are updated based only on their individual, relevant impact.
> Policy optimization is more directed and is more effective.
o Unfortunately, this estimator might still have a high variance.

o Next, we will introduce a way to reduce variance.
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Policy gradient theorem (version 3): Baseline expression

Policy gradient theorem (Baseline)

For any function b: S — R, we have
- trome _
VoJ(mg) = Errpy g 7 [Q7 (st,at) — b(st)] Vg log mg(at|st) | - (3)

t=0

Recall version 2 of the policy gradient theorem where we have the above expression but with b(s¢) = 0.

Remarks: o For any baseline b(s) that does not depend on the actions:
Banry [b(5) Vo log 7o (als)] = 0.
o A natural choice of baseline is the value function: b(s) = V76 (s).
o We call A™(s,a) := Q™0 (s,a) — V™0 (s) the advantage function.

o Mainly employed as a variance reduction mechanism.
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Proof of baseline expression

Derivation: o Notice that ) mg(als) =1 for any s € S.
o For any b(s) that is independent of actions, we have the following:
Vomo(als)

m(als)

= b(s) Y _ Voro(als)

Banrg(ls) () Vo log ma(als)] = b(s) Y _ ma(als)

= b(s)V Y _ mg(als)

== b(S)Vgl
=0.
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Summary: Policy gradient theorem (versions 1-3)

o REINFORCE expression:

Vo J(mg) = Brmp, | R(T) ( i Vo 10g7r9(‘%|5t))

t=0

o Action-value expression:

[eS)
VgJ(T(g) = E-,-Npg Z’thﬂe (St, at)v.g logwg(at\st)
t=0

o Baseline expression:

[e’s}

VoJ(m6) = Ernpg th [Q™ (s¢,at) — b(s¢)] Ve log mo(at|st)
t=0
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Example: Policy gradient learns cartpole

o The OpenAl Gym library provides a collection of environments for RL research.

o One of them is called the cartpole.

> The goal is to balance a stick on a cartpole as long as possible, by moving it to the left or right.

Figure: Cartpole environment. Actions are left (0) and right (1), the state is the position and velocity of the cart, and the angle
and angular velocity of the pole (all encoded as floats). The episode ends when the pole is more than +12° from vertical, or
the cart moves more than 2.4 units from the center. Reward +1 for every step taken without terminating.
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Example: Policy gradient learns cartpole (cont’d)

o We train an agent with neural softmax parameterization to solve this task.

> Each time, we use a different version 1, 2 or 3 of the policy gradient theorem to build a gradient estimate.

time balanced)
e oe N
5 5 5 8
% 38 & 8

-
1
3

-
S

—— REINFORCE
+ Reward2Go
+ Baseline (hand-designed)

W

0 250 500 750 1000 1250 1500 1750
Episode #

Total reward (
N oo
%38

Figure: Learning curves for the cartpole environment
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Example: Policy gradient learns cartpole (cont’d)
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Figure: Learning curves for a different run and without stopping when the policy seems to have converged.

Remarks: o The learning curves are only across one training run, explaining the large variance.
o Practical RL depends a lot on hyper-parameters, initialization and engineering tricks.
o The baseline we used is handcrafted not trained (negatively correlated with the pole angle).

o This is a very simple problem and we used a small feedforward NN.
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Example: Policy gradient learns cartpole (cont’d)

=TI I
u” I ' l'“
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Total reward (
3
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Figure: Learning curves for a different run and without stopping when the policy seems to have converged.

o Self-exercise: Use the notebook we provide and check the learning curves and cartpole videos they generate.

> See moodle for the corresonding notebook. We recommend using Google Colab.
> Play around with the hyper-parameters (learning rate, discount factor, etc.).

> Try different baseline functions, and then try to use a learned one given by a NN (not handcrafted).
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Policy gradient theorem (versions 4-5)

o Recall that the discounted state visitation distribution under a given policy 7 is given as below:

Ni(s) = (L=7) Y 7'Blst = slso ~ p, .
t=0

Policy gradient theorem via occupancy measures

> Action-value expression:

1 s
VgJ(ﬂ'g) = EESNAZG I:Ea~7r9(-|s) [Q e(sva)vﬂ logﬂg(a|s)ﬂ o (4)
> Advantage expression:
1 s
Vod(mg) = ﬁESNAZQ [anﬁeus) [A™ (s,a)Vyg logﬂg(a|s)]] . (5)
Remark: o The proof follows immediately based on the definition of A7 (s).
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Policy gradient theorem (versions 4-5): Remarks

o Constructing unbiased stochastic policy gradients requires sampling from A7 (s) (versions 4-5).

o This can be achieved by generating (s, ar) with a random horizon T' ~ Geometric(1 — ).

> Indeed, it holds that

oo o0
Plsy = s|so ~ p, ] = Zyt(l —)P[s¢ = s|so ~ p, 7] = (1—7)E Z’)’tﬂ{sz =s}so ~p,m| = AZ(S)‘
t=0 t=0

o Unbiased estimator of A™® (s, a) requires two random rollouts to estimate Q7@ (s,a) and V76 (s), separately.
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Exercise: Policy gradient under tabular parameterization

o Compute policy gradient under the direct and softmax parameterization in the tabular setting.

Direct parameterization Softmax parameterization
In direct parameterization, the policy is given by In softmax parameterization, the policy is given by

exp(0s,0)
o' €A eXp(es,a’)

mo(als) = Os,a,

)

mo(als) = 5

where 05 4 > 0 and Os.q = 1.
e 2acaloe where 0 € RIAIXIS.

Exercise: o Derive aé]o(ww via the chain-rule (the solutions are on the slide 34).
s.a
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Monte Carlo policy gradient method

REINFORCE: Monte-Carlo policy-gradient method

Initialize the policy parameter 6; € R%, the step-size a > 0, the baseline function
b(-). Choose a total number of episodes E, i.e., the number of gradient updates.

fore=1,...,E do
Generate an episode so, ag, 70, -.., ST, aT, r7 following my using the chosen pa-
rameterization. Initialize the gradient estimate VJ(6.) = 0.

for each step t =0, 1, ..., T of the episode do

Compute return Gy +— Zj:t vty ala REWARD2GO
Compute advantage estimate A¢ < Gy — b(st)
VJ(0e) « VJ(0e) + vt Ar - Vg log mo(ar|st) 4 la REWARD2GO
end for =R
Oct1 < Oc + aVJ(0e) note that the step-size might depend on e
end for
Remarks: o The policy is updated only after generating a whole trajectory, which may not be efficient.

o We can use the idea of temporal difference learning to build policy gradient estimators.
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Policy gradient method with value function estimation

Online actor-critic algorithm
Initialize Og, wo, state so ~ p,ao ~ 7o, (:|s0)
for each step t =0, 1, ..., T of the episode do
Obtain (r¢, s¢41,a¢41) from g,
Compute temporal difference: ¢ = 7t + YQuwy (St1,@t+1) — Quy (St, at)

Compute policy gradient estimator:
VoJ(mg,) = Qu, (st,at)Vglogmg, (at | st)

Update 0: ;1 = 0; + Oé%gJ(ﬂ'gt)
Update w: W41 = Wt — 55tvawt (St, at)
end for

Remarks: o Approximating the value function in policy gradient introduces extra bias.

o There are various ways to estimate the advantage function [22].
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Summary: Policy gradient methods

o Advantages
> Directly optimize policy parameters (but still need to evaluate value functions)
> Can deal with high-dimensional and continuous action spaces

> Can learn stochastic policies

o Optimization Challenges:
> Nonconcave landscape (in general, only converge to stationary points)
> Sensitive to stepsize choice

> High variance/bias of the policy gradient estimators

Figure: A non-convex function. (a) and (c) are plateaus, (b) and (d) are global minima, (f) and (h) are local minima, (e) and
(g) are local maxima. [9]
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Recap: Policy-based methods

Policy optimization

In policy optimization, we seek to obtain numerical solutions to the following objective function:

o0
max J(m9) := B | > y'r(se,ar)|so ~ 1m0 | = Banu[V(s)].
t=0
Tabular parameterization Non-tabular parameterization
> Direct : > Softmax:

rolals) = PUasa)
Za'GA EXp(fG(Sva/))

mg(als) = 0s,a, with 054 >0, Z Os,a = 1.

> Softmax:
> Gaussian:
exp(0s,a)

mo(als) = m' mo(als) ~ N (ug(s),ag(s)) °
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Recap: Policy gradient theorems

o Recall that py(7) is the trajectory distribution and A7 (s) is the discounted state visitation distribution.

Policy gradient theorems

> REINFORCE expression is given by

VoJ(mg) = Brmp, | R(T) ( i Ve logﬂe(adst))

t=0

> Action-value expression is given by

oo
VQJ(TI'Q) = ETNPQ Z,thﬂ'g (St7 at)Vg log Uy (at|st)
t=0
1
=—E

I Q70 (s,a)Vglogmg(als)] .
-7

B
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Policy gradient in tabular setting (solution)

o Direct parameterization: mg(als) = 0s,a,

0J(mg) 1 - Tr
9.0 1o ()

o Softmax parameterization: mg(als) o« exp(0s,a),

1
8;;:2) = oA (s mo(als) A7 (s, ).
Proofs: o Recall that Vg J(mp) = ﬁ Zs A2 (s) Za Q70 (s,a)Vemg(als).

. . Omg(als) _ ot _
o Direct case: B0 = I{s=s",a=4d'}.

o Softmax case: w =mp(a|s)1{s =s',a=a'} — mg(a|s)mg(a’|s)1{s = s'}.

s’ a’
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Optimization challenge I: Nonconcavity
o In general, the objective J(my) is nonconcave.
o This holds even for the tabular setting with direct or softmax parameterization.

Example (direct parameterization)

0 0 V™ (s1) = w(az|s1)m(a1|s2)r.
> Consider Tmig = %, where
0 m1(az|s1) = 3/4, m1(a1|s2) = 3/4;
0 r>0 ma(azls1) = 1/4, ma2(a1]s2) = 1/4;
Tmid(a2]s1) = 1/2, Tmid(a1]s2) = 1/2.

9 1
a1: move up, az: move right > VTi(s1) = 1gm, V™2 (s1) = 157
> Vmid(s1) = ir < %(V7r1 (s1) + V™2 (s1)).
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Optimization challenge I: Nonconcavity
o In general, the objective J(mg) is nonconcave.

o This holds even for tabular setting with direct or softmax parameterization.

Example (softmax parameterization)

0 0 0= (‘9&1,81:9112»81"9111752:9u2,82):

efaz,s1 efa1,s2

V70 (s1) = r
( efar.s1 4 efas,sy gfar,sy 4 gfan,sy

> Consider
0 r>0 01 = (log1,log3,log 3,log1),
0 0 02 = (—log1,—log3,—log3,—logl),
51 @ @ Omia = (61 + 02)/2 = (0,0,0,0).
> V71 (s1) = —7" V72 (s1) = LG
> Vv TOmid (31) = —7" < = (Vﬂ-el (Sl) VWBZ (51)).

a1: move up, az: move right
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Convergence to stationary points (see Lecture 1)

Convergence of exact policy gradient method: ;11 = 0; + oV J(mg,) (Nesterov, 2004 [18])

If the objective J(mg) is L-smooth and set oy = then we have the following guarantee:

1
f.
2L(J(7T9*) — J(ﬂ'g ))
i VoJ 2< |
t:OYr'r}'l‘anlll oJ(mo,)ll2 < =

Convergence of stochastic policy gradient method: 6,11 = 0; + atﬁgj(ﬂ'gt)
(Ghadimi and Lan, 2013 [8])

If the objective J(mg) is L-smooth and §9J(7rg) is unbiased and has bounded variance by o2, then with a
proper choice of the step-size, we have the following guarantee:

L(J(mg+) — J(mg, ))o?
tzo?.i’r}_lIE[HVgJ(Trgt)H%] =0 \/ (J (g )T (7a,))

Questions: Can these rates be further improved? Do stationary points imply good performance?
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Optimization challenge Il: Vanishing gradient and saddle points

o In general, there are no guarantees on the quality of stationary points.
o Vanishing gradients can happen when using softmax parameterization.

o Vanishing gradients can happen when lacking sufficient exploration [1].

H

Figure: Example with H + 2 states and v = TEn rewards are
everywhere 0 except at sg41. For small order p and 6 such

ef — 1

) . . H/4
Figure: Softmax function: Tre T i that 0, o, < % for all s [1]: [VPV™0 (s0)|| < (%) / ]

MGl Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 38/ 57 EPFL



A simple example

V(B) Landscape.

Figure: MDP with 2 states and 2 actions

Figure: V™ (B) under direct parameterization
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A simple example (cont’d)

V(B), :0.9, stepsize:0.01, iter:100, initial: (0.1,0.1)

V(B), :0.9, stepsize:0.01, iter:100, initial: (0.5,0.1)

V(B), ~:0.9, stepsize:0.01, iter:100, initial: (0.1,0.5)

V(B), 7:0.9, stepsize:0.01, iter:100, initial: (0.25,0.25)

Figure: PG with different initial points
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A simple example (cont’d)

V(B), ~:0.9, stepsize:0.01, iter:100

V(B), ~:0.9, stepsize:0.05, iter:100

V(B), 7:0.9, stepsize:0.1, iter:100 V(B), 7:0.9, stepsiz iter:100

Figure: PG with different stepsizes
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Fundamental questions

Question 1

When do policy gradient methods converge to an optimal solution? If so, how fast?
Remarks: o Optimization wisdom: GD/SGD could converge to the global optima for “convex-like” functions:
J(@*) = J(x) = O(|V I (m)]).
o We focus on the tabular setting with exact gradients.
Question 2
How can we avoid vanishing gradients and improve the convergence?
Remarks: o Optimization wisdom: Use divergence with good curvature information.

o Switch to natural policy gradient by exploiting geometry.
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Performance difference lemma (PDL)
Performance difference lemma (Kakade and Langford, 2002 [11])
For any two policy m, 7/, the following holds
’ 1 !
J(Tl') - J(ﬂ— ) = ﬁEva)\;’{, ar~(-]s) |:A (S,CL):I .

The difference in expected returns between two policies m and 7/ depends on how the new policy ™ samples
actions compared to the advantage function of the old policy 7/, weighted by the state distribution )\Z(s):

> If A™ (s,a) > 0 for actions that 7 selects more often, then J(r) > J(='), i.e., = improves upon .

’
> If A™ (s,a) < O for actions that 7 selects more often, then 7 performs worse than 7’.

> If 7 is a small update from =/, this lemma helps approximate the expected improvement.
Remarks: o Here AJ(s) = (1 — 'y)E[ZzO YU gs,—s3 |50 ~ 1, 7] is the state visitation distribution.
o Here A™(s,a) = Q7 (s,a) — V™ (s) is the advantage function.
o *Can be used to show policy improvement theorem for policy iteration (self-exercise).
o *Can also be used to show policy gradient theorem (self-exercise).

o Proof follows from the definition of value functions (see supplementary material, slide 11).
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Key insight: Policy optimization is convex-like in the full policy space
o Performance difference lemma:

J(m*) = J(m) = 1i ZW (a]s)A™ (s, a).

o Policy gradient theorem (tabular setting):

;;(7% = ﬁ)\z(s)Q"(s,a) (direct parameterization).
1

9J(m) = ——X\ (s)m(als)A™ (s, a) (softmax parameterization).

on(als) 1—~*

o This seems to imply gradient dominance type properties:

J(7*) = J(7) = O(max (7 — w, VJ(7))),
TEA
which is crucial to ensure global optimality.

> *Closely related to the tojasiewicz inequality, which is more nuanced.
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*Policy optimization (direct parameterization)

o We first consider the direct parameterization in the tabular setting.

Policy optimization under direct parameterization

max  J(m) := Esnp[V7(s)],
WEA(-A)IS‘

where A(A)ISI = {r : 7(als) >0, ZaEA m(als) = 1,Vs}. For brevity, we denote this set as A.

Remarks: o If m € A is optimal, then it satisfies the first-order optimality condition:
(7 —m, VJ(m) <0,VTEA,
or equivalently, maxzca (7 — 7, VJ(m)) = 0.

o Does the reverse statement hold?
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*Gradient dominance property

Gradient mapping domination

For any policy 7, we have

-max (7T — m, VJ(7)).

AL
J(m*) = J(m) < H— ‘
AL o 7EA

Remarks: o This shows that J () satisfies the Polyak-tojasiewicz (PL) condition [12].

o Any first-order stationary point is thus globally optimal
(maxzea (T — 7w, VI(7)) = 0= J(7) = I(7*)).

*
x
AT
Al

o The term ) is called the distribution mismatch coefficient.

)oo
> This coefficient captures the hardness of the exploration problem.

> Note that in the vanishing gradient example, this coefficient can be exponentially large.

* *

™ )\7\'
> Note that max, ﬁ < 25 ||| since Y, AT (s) > (1 = v)u(s).
oo oo

. o Proof via performance difference lemma (see supplementary material, slide 12).
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Projected policy gradient method

Projected policy gradient method

By projected policy gradient method, we mean the iteration variant below
m41 = Ha(me + 0V I (7)),

where the projection is given by IIa (7) = argmin,/ca || — 7'||3.

Remarks: o Take a gradient ascent step and project onto the simplex set (can be computed efficiently).

o

Generalized gradient mapping: G(m¢) = % (me41 — 7¢), or equivalently, w1 = m¢ +nG(me).

o If 7 is optimal, then G(7) = 0.
o Convergence of the gradient mapping [17]: If J(7) is L-smooth, then we have

2L(J (") = J(m0))

in ||G 2 <
g%l;H (me)ll3 < T
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*Convergence of projected policy gradient method

Theorem (Agarwal et al., 2020 [1])
(1-—?®

Assume access to exact gradients. Let n = S TAT - Then, the projected policy gradient method achieves the

following guarantee:
8+/7|S||A
min J(r*) — J(my) < <YM ‘
t<T (1—7)3

Remarks: o See supplementary material, slide 15 for the proof.

M 2|

(1-v)3

o In the tabular setting, VI or Pl converges linearly, which is much faster.

o We have large constants in the bound and a slow rate inT.
o o]

1
VT

o However: Linear convergence of PG can be shown with larger step-sizes through line-search [3].
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Policy optimization (softmax parameterization)

o We now consider the softmax parameterization in the tabular setting.

Policy optimization under softmax parameterization

Consider the objective

ro(als) = < 220e)__,
Za’ eXp(es,a’)

mox J(mg) :=Es~u[V™(s)],  where

Softmax policy gradient method

By softmax policy gradient method, we mean the iteration variant below

1
041 =0y +1VoJ(mg,), where 9J(0) _ —— X2 (s)mg(als)A™0 (s, a).
aes,a Il = il
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*Convergence of softmax policy gradient method

Convergence of softmax policy gradient (Mei et al., 2020 [14])

3
Assume access to exact gradients, let n < a ;)

~———. Then, the iterates of the softmax policy gradient method
satisfy the following guarantee:

.12
16|S| AL
J(m*) = J < —— (== ,
() = I(r0r) < e ||
where ¢ = [min ¢ 7p, (a*(s)|s)] ™' > 0.
Remark: o See supplementary material, slide 17 for the derivation of the algorithm.

o The proof is similar to the one in the projected setting.

o Once more, we have a slow rate and large constants in the bound.
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Natural policy gradient method (NPG)

o Natural policy gradient (NPG) allows us to overcome the large constant in the convergence bound.

Natural policy gradient (Kakade, 2002 [10])

By natural policy gradient (NPG), we mean the following iteration variant below:
041 = 01 +n(Fp,) VI (mg,),

where

> Fy is the Fisher information matrix:

Fo=E Vg log mg(als)Vg log 7rg(a|s)T] .

L
sw)\ug ,arvmg (+]s) [

> CT is the pseudoinverse of a matrix C.
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How can we better adapt to the local geometry?

fx)

Global quadratic upper bound
Qulx,x")

7(xk) exitl = arg min {f(xk) +(Vf(xF),x —x*) + %Hx - xl‘Hﬁ}

IV/ (@) = VIl < Llly — = zzT

L is a global worst-case constant
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How can we better adapt to the local geometry?

fx)

Local quadratic upper bound

Qre(x,x")

7(x") ox"! = arg min {f(xk) +(Vf(xF),x —x*) + %Hx - kaﬁ}

3 T k Ly k|2
IVf(@) =V <Lly—z| () < O + DT (=) 4+ T e — 3

L is a global worst-case constant > . applies only locally
=)
= =

T
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How can we better adapt to the local geometry?

fx)

(") 1
f(x) < f(xF) + Vf(xh 3’(x—¥/'1+;\\x’xl i
3 f
T
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NPG under softmax parameterization

o Under softmax parameterization, NPG allows closed-form updates that can be computed efficiently.

exp(fs,a)

o Consider softmax parameterization mgy(a|s) = Z n and denote 7y = Ty, .
/ exp s.a’
a ,

o The policy update below shows that NPG then correponds to a policy mirror ascent update.

NPG update

Under softmax parameterization, NPG corresponds to the following parameter update involving the advantage
function A™%% (s, a),
n
Opy1 =0f + —— A0,
1—v

which is equivalent to the following policy update:

exp(nA™(s,a)/(1 — 7)) .
o Tt(a’]|s) exp(nAT (s, a’) /(1 = 7))

met1(als) = me(als) >
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Convergence of NPG under softmax parameterization

Convergence of NPG with softmax parameterization [1]

Assume access to the advantage function A™¢. For any n > (1 — v)2log|.A| and T > 0, NPG with softmax
parameterization satisfies the following guarantee:

2

J(m*) — J(mep) < T2

Remarks: o We have dimension-free convergence, i.e. no dependence on |A|, |S|.

o We have no dependence on distribution mismatch coefficient.

Questions: Why? What about the function approximation setting? Can we further improve the
convergence?
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Next week!

o Recap on policy gradient methods

o A deeper look at the natural policy gradient method
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Supplementary Material

Deferred proofs
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Proof of action-value expression

Proof
For any state sp, we have
VV™ (s0) = V Z 76 (ao]s0) Q™ (so, ao) (by definition of Q™)
ag
= Z Vg (ao|so) Q™ (so,a0) + Z g (aolso) VQ™ (so,a0) (by chain rule)

agQ ag
= Z Vg (aols0) Q™ (s0,a0) + Z o (@o|s0) V(T (s0,a0) +v Z P(s1|s0,a0)V ™0 (S1)>
aqp s1

ag

= Zwe (ao|s0) Vlogmg (ao|so) Q™ (so,a0) + v Z g (ao|so) P (s1]s0,a0) VV7 (s1).

ao ao,s1
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Proof of action-value expression (cont’d)

Continued.

By induction, we have
VoJ(mg) = Z 1(s0)VV™ (s0)
50

= Brnpy [Q (50, 00) V 10g 7 (a050)] + 1Ernpy [VV™ (51)]

= Errp, [Q™ (50,a0) Vogma (aols0)] + YEr~py [Q™0 (s1,a1) Viogmg (a1]s1)] + ...

o0
= Brapy [Z Y'Q™ (st,ar)V log We(at|5t)} .

t=0
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Proof of performance difference lemma

Derivation: V7 (s) — V™ (s) =E,p () [Z»yfr(St, ar)lso = 5] = V™ (s)

t=0

=Erp () [Z 7t (r(st, at) + V”/(st) — V”,(st)) [so = s] - V’T/(s)
tO:oO

=Erep, ([ D7 (rlstya0) V™ (se41) = V™ (50)) Iso = s
to:o()

=Erp, (r) [ZWt (r(st,a1) +VBsy 1 mp(c[srsar) V™ (st41)] — V”/(St)) |s0 = s]
t=0

= E‘rr\zpw(‘r) [Z’yt (Qﬂ/ (Sl‘ﬂ (lt) - Vﬂ/(st)) ‘50 = 8}
t=0

oo
’
=Ernp,(n) [Z 7 AT (st, at)|so = S}
t=0
Remark: o We use a telescoping trick to go from line 2 to line 3!
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Proof of gradient dominance

Derivation: J(m*) = J(m) = %'y g AZ* (s) Z”*(MS)AW(S’ a)
:ﬁ M S) HS)ZW (als)A™ (s, a)
< ﬁ A)\% N X glggZAﬁ(s)ﬁ(ab)A”(s,a)
- L A; x ?gﬁgx,c(s)(ﬁ(a\s) — w(als))A" (5,0)
- L AA x ?g;ms)(ﬁ(a\s) — n(als))Q" (5, )
_ ‘ AALW X max{s VI ().
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Supplementary Material

Projected policy pradient and softmax policy gradient
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Projected policy gradient method

Projected policy gradient method

By projected policy gradient method, we mean the iteration variant below
m41 = Ha(me + 0V I (7)),

where the projection is given by IIa (7) = argmin,/ca || — 7'||3.

Remarks: o Take a gradient ascent step and project onto the simplex set (can be computed efficiently).

o

Generalized gradient mapping: G(m¢) = % (me41 — 7¢), or equivalently, w1 = m¢ +nG(me).

o If 7 is optimal, then G(7) = 0.
o Convergence of the gradient mapping [17]: If J(7) is L-smooth, then we have

2L(J (") = J(m0))

in ||G 2 <
g%l;H (me)ll3 < T
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Convergence of projected policy gradient method

Theorem (Agarwal et al., 2020 [1])

3
Assume access to exact gradients. Let n = A=) Then, the following holds

2v[ Al
8 \/ISIIAl || Az
min J(7*) — J(m¢) < w -
t<T A=73VT || » ||

Proof sketch: © Show that the objective J(m) is L-smooth with L = (il‘:‘)la and J(m) < ﬁ

*
o Invoke convergence on gradient mapping: min;<r ||G(m)||% < w.

o

Invoke the relationship between gradient mapping and approximation of stationary point [17]:

I}?ﬁ(ﬁ — 741, VI (1)) < (14 L) - |G(7e)ll2 - (|72 4+1 — 7el|2-

o Use the gradient dominance for global convergence.
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A closer look at the convergence

Theorem (Agarwal et al., 2020 [1])

3
Assume access to exact gradients. Let n = (;;\’XI . Then, the following holds
8/7[S||A| || A7
min J(m*) — J(m¢) < ¢ £ .
t<T L=73VT| » ||

Remarks: o We have large constants in the bound and a slow rate in T
o In the tabular setting, VI or Pl converges linearly, which is much faster.

o However: Linear convergence of PG can be shown with larger step-sizes through line-search [3].
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A closer look at the PG method

o The projected PG update can also be viewed as
Tt = M (me + 0V I (7))

1
= arg max {(VJ(ﬂ't)Jr) - —||lr— Wt\\g} .
TEA 2n

o As 7 — oo, this reduces to the policy iteration update:

meri(ls) = argmax Y w(s|a)Q™ (s,a).

7(-]s)EA(A) -

o In other words, the policy gradient method can be viewed as an approximation of policy iteration

1 1
arg max {<w(m>,w> P mu%} = argmax {<Q“wr>w — - mnz} , (6)
TEA 2n TEA H 2n
oJ(m) 1

where

Brlals) = E/\E(S)Q’T(s,a) and (-, '>>‘ﬁ is the reweighted inner product by A7}
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From gradient descent to mirror descent: Exploiting the non-Euclidean geometry

o We can adapt PG in the simplex with mirror descent updates:

meg1 = argmax < (VJ(m¢), m) — 72 ALt ()KL (7 (-[s)||me(]s)) ¢
TEA

where KL (pl|lq) = Z p; log (p‘) is the Kullback-Leibler divergence.

o The policy mirror descent update can be further simplified as

exp(nQ*(s,a)/(1 —7)) _
o Tt(a’]s) exp(nQt(s,a’) /(1 = 7))

m11(als) :ﬂt(GIS)Z

o We will see that this is the so-called natural policy gradient method under softmax parameterization.

o As 1 — o0, this also reduces to the policy iteration update.
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Policy optimization (softmax parameterization)

o We now consider the softmax parameterization in the tabular setting.

Policy optimization under softmax parameterization

exp(0s,a)
max J(mg) := Es~pu[V™0(s)], where mg(a|s) = ———+"—.
0 # Ea' Cxp(es,a')
Softmax policy gradient method
8J(0 1.
0t11 =6t +nVoJ(mg,), where ©) = —— X% (s)mg(als)A™0 (s, a).
86's,a Il = il
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Gradient dominance and global convergence

Gradient dominance (Mei et al., 2020 [14])

Ar
J(7*) = J(mg) < [minmg(a*(s)|s)] ' VS || oz || - IVed (wo)ll2-
s 2N -
Convergence of softmax policy gradient (Mei et al., 2020 [14])
3
Assume access to exact gradients, let n < %. Then, the following holds
112
16|S| AL
J(m*) —J < —— (== ,
() = J(r0r) < s ||
where ¢ = [min, ¢ 7p, (a*(s)|s)] ™' > 0.
Remark: o Proof follows similarly as the tabular setting with slow rate and large constants in the bound.
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